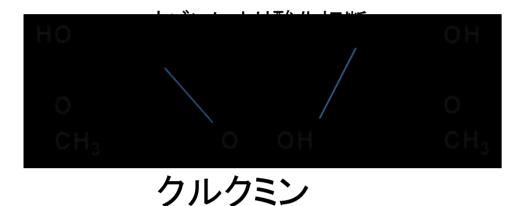
# オゾン分解の可視化 ~シッフ試薬とTLCを用いた研究~

#### 〈要約〉

2017年度の先行研究では,クルクミン(カレーの匂い)のオゾン分解によりバニリン(バニラの匂い)へと変化させた。我々の研究では,t-ケイ皮酸(シナモンの匂い)のオゾン分解によりベンズアルデヒド(梅の匂い)へと変化させた。このオゾン分解による変化を匂いの変化としてのみではなく,視覚的にも確認できる方法を検討した。

### 1. はじめに


- 12017年度の先行研究によるクルクミン以外にも、オゾン分解によって匂いが変化する物質はないのか。
- ②オゾン分解による化学変化を、匂いの変化だけではなく、視 覚的にも確かめることはできないか。

# 2. 研究方法

### ①オゾン分解に適する物質の検討

オゾン分解とは、 $O_3$ によって、有機化合物のC=C部分を切断、酸化する反応。

例)クルクミンのオゾン分解(2017先行研究)







②オゾン分解前後の変化の調査

- 1) 匂いの変化
- 2) 呈色反応によるリアルタイム検出(シッフ試薬)
- 3)TLCによる化合物の同定

# 3. 結果

#### (1)オゾン分解に適する物質の検討

C=Cがあり、オゾン分解前後で異なる匂いとなりそうな物質として、表1の物質を検討。予算などからt-ケイ皮酸に決定。

# 表1|

| ı | 検討した物質     | 化学式                                                                   |
|---|------------|-----------------------------------------------------------------------|
|   | ノネナール      | C <sub>6</sub> H <sub>13</sub> -CH=CH-CHO                             |
|   | 青葉アルコール    | C <sub>2</sub> H <sub>5</sub> -CH=CH-C <sub>2</sub> H <sub>5</sub> OH |
|   | スチレン       | C <sub>6</sub> H <sub>5</sub> -CH=CH <sub>2</sub>                     |
|   | シンナミルアルコール | C <sub>6</sub> H <sub>5</sub> -CH=CH-CH <sub>2</sub> OH               |
|   | t-ケイ皮酸     | C <sub>6</sub> H <sub>5</sub> -CH=CH-COOH                             |
|   |            |                                                                       |

#### ②オゾン分解前後の変化の調査

## 1) 匂いの変化

t-ケイ皮酸の溶媒として,表2の溶媒①~④を用いて比較

| 表2 | 溶媒として用いた物質 |           |  |
|----|------------|-----------|--|
|    | ①メタノール     | ②ジエチルエーテル |  |
|    | ③ヘキサン      | (4)7K     |  |

わずかに匂いの変化を感じることができた。しかし溶媒の匂い と混ざり、明確な違いは分かりにくいものもあった。

2) 呈色反応によるリアルタイム検出(シッフ試薬)

シッフ試薬は芳香族アルデヒド基の検出にも有効

| 表3 | 溶液             | シッフ試薬を<br>入れる前 | シッフ試薬を 入れた後 |  |
|----|----------------|----------------|-------------|--|
|    | t-ケイ皮酸 + メタノール | 無色透明           | 瞬間的に赤紫色     |  |
|    | t-ケイ皮酸 + 水     | ほぼ無色           | 濃い桃色        |  |
|    | t-ケイ皮酸 + アセトン  | 無色透明           | 白く濁る        |  |

3)TLCによる化合物の同定(展開溶媒 アセトン: ヘキサン=1:2)

#### 表4

| 溶液の種類          | Rf値        |
|----------------|------------|
| オゾン分解後         | 0.35ك 0.39 |
| オゾン分解前(t-ケイ皮酸) | 0.33       |
| ベンズアルデヒド       | 0.40       |

オゾン分解後とベンズアルデヒドのRf値がほとんど同値

➡t-ケイ皮酸がベンズアルデヒドに変化したと考えた

# 結論

- Ot-ケイ皮酸(シナモンの匂い)のオゾン分解によりベンズアルデヒド(梅の匂い)へと変化させることができた。
- 〇シッフ試薬を加えることによって、オゾン分解前後で色が変化することを確認できた。
- OTLCによって、オゾン分解前後の物質を同定することができた。

# 4. 考察

- ○匂いの変化からt-ケイ皮酸のオゾン分解が起こり、ベンズアル デヒドが生じたと考えられる。
- ○溶媒に水とシッフ試薬を用いてt-ケイ皮酸のオゾン分解を行うとほぼ無色のオゾン分解前の溶液が、濃い桃色に変化。
  - →溶液の色の変化からオゾン分解でt-ケイ皮酸とは異なる物質が出来たことを確認
- ○シッフ試薬(脂肪族アルデヒド基の検出に用いる)が芳香族化 合物でもアルデヒド基の検出に有効である。
- │○有機化合物のオゾン分解の確認にシッフ試薬が有効である。
- ○溶媒をアセトンに変えてオゾン分解を行うとオゾン分解前には 無色透明であった溶液が分解後にシッフ試薬を入れると白く桃 色に濁った溶液に変化(濁った原因としてシッフ試薬の溶解度 などが原因と考えられる。)
  - ➡t-ケイ皮酸はオゾン分解でベンズアルデヒドへと変化したと 推察。
- ○先行研究と同様、TLCを用いて検証し、t-ケイ皮酸のオゾン分解後とベンズアルデヒドのRf価が近似していた。
  - ➡TLCにより、ベンズアルデヒドが生じていたことを確認できた。

### 5. 参考文献

- · 高等学校化学(第一学習社)
- ・サイエンスビュー化学総合資料(実教出版)
- ・科学の新研究(ト部吉庸著、三省堂)
- ・2017年度課題研究論文集